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Review article

Antimicrobial proteins and peptides of blood: templates for
novel antimicrobial agents
Ofer Levy

The innate immune system provides rapid
and effective host defense against micro-
bial invasion in a manner that is indepen-
dent of prior exposure to a given patho-
gen.1 It has long been appreciated that
the blood contains important elements
that mediate rapid responses to infection.

Thus, anatomic compartments with ample
blood supply are less frequently infected
and recover more readily once infected,
whereas regions with poor perfusion are
prone to severe infection and may require
surgical débridement. Blood-borne in-
nate immune mediators are either carried

in circulating blood cells (ie, leukocytes
and platelets) or in plasma after release
from blood cells or on secretion by the
liver. (Blood. 2000;96:2664-2672)

© 2000 by The American Society of Hematology

Introduction

A growing body of research has revealed the mechanisms by which
blood cells exert microbicidal activity. Activated neutrophils,
eosinophils, macrophages, and, to a more limited extent, lympho-
cytes increase oxygen consumption during phagocytosis in what
has been termed the “respiratory burst.” This oxidative response is
now known to be mediated by a multicomponent leukocyte oxidase
that transfers electrons to molecular oxygen.2 These oxygen
radicals are converted to hydrogen peroxide and, by the action of
myeloperoxidase, to hypochlorous acid—microbicidal agents that
have long been used as commercial and household antimicrobials.3

Chronic granulomatous disease (CGD) is caused by genetically
acquired defect(s) in the phagocyte oxidase and is characterized by
increased frequency of infections with certain microbial pathogens.4

Nitric oxide is another small, rapidly diffusable antimicrobial
mediator, whose production by inducible nitric oxide synthase
(iNOS) contributes to mammalian host defense against intracellular
pathogens.5 Although most readily demonstrable in murine macro-
phages, iNOS expression and function have been detected in
human macrophages derived from patients with infection or
inflammatory disorders5 as well as in human neutrophils activated
by bacterial infection.6

Studies of murine macrophages have identified the natural
resistance-associated macrophage protein (NRAMP) as an impor-
tant mediator of innate defense against certain intracellular patho-
gens (eg,Salmonella, Mycobacteria,and Leshmania).7 Based on
homology to proteins of known function as well as direct experimen-
tal evidence, it has been argued that NRAMP modulates ion flux
across the phagolysosomal membrane.8 Genetic polymorphism of
the NRAMP1 gene has been associated with variable human
susceptibility to mycobacterial infections.9

Several observations have suggested that eukaryotic organisms
also use peptide-based oxygen-independent antimicrobial mecha-

nisms. Both leukocytes from patients with CGD and normal
leukocytes deprived of oxygen in vitro are capable of killing a
variety of microorganisms.10 Moreover, crude acid extracts of
leukocytes possess direct microbicidal activity that is oxygen
independent.11 Over the past 20 years, a growing number of
cationic proteins and peptides with direct microbicidal activity
demonstrable in vitro have been isolated and characterized.12 It is
increasingly appreciated that an important mechanism by which
blood exerts antimicrobial activity is by the mobilization of
these cytotoxic proteins and peptides to sites of infection. With
few exceptions, cell-associated agents are carried in the cyto-
solic granules of leukocytes and platelets, whereas extracellular
agents are either the product of cellular degranulation or of
secretion from the liver into acute-phase plasma. In addition to
direct microbicidal activity, many of these agents are also capable
of neutralizing the proinflammatory effects of microbial sur-
face components.13-15

The neutrophil granule antibiotics are generally membrane-
active cationic proteins and peptides whose affinity for the
negatively charged microbial surface depends not only on electro-
static interactions but also on their tertiary (3-dimensional) struc-
ture. Despite having similar net positive charge, these agents vary
markedly in size, structure, and mechanisms of action, as well as in
the selectivity of their cytotoxic effects. Antimicrobial proteins and
peptides often demonstrate relative selectivity toward microbial
cells, which has been attributed to their relatively higher affinity for
the surface lipids of microbial as opposed to eukaryotic cells.16,17

Although the focus of this review is on the antimicrobial properties
of such cytotoxic proteins and peptides, many of these agents
manifest additional activities relating to immune modulation and
wound healing.12 Similar proteins and peptides have also been
identified in mucosal epithelial cells.18
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Innate defense molecules:
a phylogenetic perspective

Although the focus of this review is on the antimicrobial proteins
and peptides of mammalian blood, it is instructive to consider the
strong similarities of this arm of the innate immune system to
corresponding mediators of nonmammalian vertebrate and inverte-
brate animals as well as plants. The expression of antimicrobial
proteins and peptides in highly divergent species reflects the
common need of multicellular organisms to defend against micro-
bial invasion (Table 1).19,20 In particular, great progress has been
made in characterizing the innate responses of insects to infection
and septic injury.19-21Innate responses to microbial surface compo-
nents by both insects and mammals are mediated by structurally
homologous signaling molecules, including Toll-like receptors
(TLRs), cytosolic kinases, nuclear factor (NF)-kB transcription
factors, and NF-kB response elements.22 By such pathways, septic
injury to insects induces rapid (12-48 hours) expression of multiple
genes encoding antimicrobial proteins and peptides in both blood
cells (hemocytes) and the insect fat body (liver equivalent).19,20,23

Approximately 100 such peptide antibiotics, many of which reach
high micromolar concentrations in insect blood on maximal
induction, have been described. Inducibility of antimicrobial
proteins and peptides is also a feature of innate defense both
systemically and at epithelial sites in plants,24 insects, and amphib-
ians (eg, frogs25), as well as mammals.26,27 Although generally
cationic, these peptides vary markedly in structure, with diverse
mechanisms of action (Table 1) that continue to be investigated.

Antimicrobial proteins and peptides
of mammalian blood

Neutrophils

The neutrophil or polymorphonuclear leukocyte is a central cellular
effector of the innate immune system. Thus patients with defects in

neutrophil quantity or quality experience increased frequency and
severity of infections.28 The relevance of neutrophils in the clinical
arena is also implicit in the use of the neutrophil count and the
percentage of band forms in gauging the likelihood of bacterial
sepsis. Neutrophils are formed in the bone marrow where their
cytoplasmic granules are synthesized in an orderly progression:
primary (or azurophilic) granules then secondary (or specific)
granules (Figure 1). More recently, a greater diversity of neutrophil
granule subpopulations has been defined, including gelatinase
granules and secretory vesicles.29 However, the antimicrobial
proteins and peptides appear to be largely confined to the primary
and secondary granules (Table 2). Activated neutrophils migrate to
sites of infection where they deploy their granule-associated

Table 1. Blood-borne antimicrobial proteins and peptides of nonmammalian eukaryotes

Organism Class Cell source
Molecular
weight (kd) Structure

Spectrum
of activity Mechanism of action Reference

Plants Plant defense peptides

(eg, thionins, defensins,

lipid-transfer proteins)

Multiple 2-9 Disulfide-rich B, F Diverse (membrane-active) 24

Insects Cecropins Fat body (liver

equivalent)

4 Amphipathic a-helix B Membrane-active/channel

formation

130

Defensins (sapecins) Hemocytes

(thrombocytoids)

Fat body

3-5 Disulfide-rich with a/b motif B1 Formation of voltage-

dependent channels

139

Diptericin Hemocytes

(thrombocytoids)

Fat body

8 O-glycosylated B2 Membrane active? 140

Drosomycin Fat body 5 Disulfide-rich with a/b motif F Membrane active 141

Glycine-rich proteins

(eg, attacins)

Fat body 9-30 Random coil B2 Sequential membrane

permeabilization

142

Lysozyme Hemocytes 15 Conserved active site B1 Lysis of peptidoglycan 143

Proline-rich proteins

(eg, drosocin)

Fat body 2-3 Linear B2 Inhibition of protein

synthesis?

144

Frogs Dermaseptins Epithelium 2-4 Variable B, F, P Membrane active 145

Magainins Epithelium 2 a-Helical B, F, P, EV Formation of multimeric

pores

25

B indicates bacteria; B2, gram-negative bacteria; B1, gram-positive bacteria; F, fungal organisms; P, protozoa; EV, enveloped viruses.

Figure 1. Neutrophil degranulation of antibiotic proteins and peptides. An
activated neutrophil in the process of phagocytosis of gram-negative bacteria (yellow
ovals) is demonstrated. As shown, specific (secondary) granules are more prone to
degranulate their contents (including lactoferrin and cathelicidins) into the extracellu-
lar space. In contrast, azurophil (primary) granules, containing BPI and defensins, are
predominantly degranulated into the phagolysosome. To a lesser extent, specific
granules also degranulate into the phagolysosome and primary granules to the
extracellular space (broken arrows). Neutrophil granule populations, including gelati-
nase granules and secretory vesicles, are demonstrated at the bottom of the figure.
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arsenal. The primary granules of neutrophils contain a variety of
antimicrobial proteins and peptides as well as hydrolytic enzymes
and are largely degranulated into the phagosome thereby exposing
ingested microorganisms to high concentrations of granule con-
tents (Figure 1). Secondary granules contain distinct antimicrobial
proteins and peptides are deployed toward the leading edge of the
chemotaxing neutrophil from which they are readily degranulated
extracellularly. Finally, antimicrobial components of the neutrophil
cytosol may be released into inflammatory fluids following neutro-
phil cell death by “holocrine secretion.”30

Lactoferrin. A member of the transferrin family of iron-binding
proteins, lactoferrin is an 80-kd protein with 2 iron-binding sites
arranged in a bilobed structure.31 Lactoferrin is localized in the
secondary granules of neutrophils as well as tear fluid, saliva, and
breast milk. In addition to depriving microorganisms of an essential
nutrient by binding iron,32 lactoferrin can also exert a directly
microbicidal effect, presumably via membrane disruption.33 Lacto-
ferricin is a naturally occurring non–iron-binding microbicidal
peptide derived from the N-terminus of lactoferrin.34 Several
studies have also documented antiviral effects of lactoferrin against
multiple viral pathogens including human immunodeficiency virus.35

In addition to its antibacterial properties, lactoferrin has also
been shown to bind to the lipid A moiety of gram-negative bacterial
lipopolysaccharide (LPS) thereby neutralizing its endotoxic activ-
ity. However, the endotoxin-neutralizing properties of lactoferrin
are limited in the presence of the plasma lipopolysaccharide-
binding protein (LBP),36 an activator of endotoxic activity that
delivers LPS to the macrophage CD14/TLR.37 Nevertheless, lacto-
ferrin administered orally is apparently capable of reducing mortal-
ity in a porcine endotoxin shock model.38

Bactericidal/permeability-increasing protein (BPI).The 55-kd
BPI selectively exerts multiple activities against gram-negative
bacteria: (1) cytotoxicity, via sequential effects on outer and inner
lipid membranes, (2) opsonization to enhance phagocytosis by
neutrophils, and (3) neutralization of gram-negative bacterial LPS
or endotoxin.39 The crystal structure of BPI reveals a symmetric
bipartite structure characterized by N- and C-terminal regions each
of which contain lipid-binding apolar pockets40 (Figure 2). Whereas
the N-terminal region of BPI is highly cationic and contains
both antibacterial and endotoxin-neutralizing properties, its C-
terminal end contributes to the ability of BPI to opsonize gram-
negative bacteria.41

Bactericidal/permeability-increasing protein is bactericidal at
nanomolar concentrations toward certain species of gram-negative
bacteria (eg, the serum-resistant encapsulated clinical isolate
Escherichia coliK1/r but not certain isolates ofSerratia marcesens
or Enterobacter cloaceae42). The selectivity of the action of BPI

toward gram-negative bacteria has been attributed to its high
affinity (nmol/L) for the lipid A moiety of LPS (or “endotoxin”).43

Studies of the effects of BPI on the biophysical properties of model
membranes composed of LPS or phosphatidylglycerol suggest that
intercalation of BPI into membrane lipids by interaction with lipid
phosphate groups and acyl chains perturbs higher order lipid
structure leading to outer and inner membrane lysis.44,45 Gram-
negative bacteria with longer LPS chain length are more resistant to
BPI action, presumably due to steric hindrance of BPI penetration
to target site(s).46 Although BPI is active against membrane
vesicles andL-forms of both gram-negative and gram-positive
bacteria, the cell walls of gram-positive bacteria render these
organisms refractory to the antibacterial activity of BPI.47

Activity of BPI is manifest not only in artificial laboratory
media, but also in blood, plasma, and serum. Activated neutrophils
release BPI into inflammatory fluids where it is potently bacteri-
cidal. BPI acts in synergy with the members of the cathelicidin and
defensin peptide families (discussed below) as well as the comple-
ment system.48 Addition of a neutralizing anti-BPI serum blocks
the bactericidal activity of rabbit inflammatory (ascitic) fluid
against encapsulated gram-negative bacteria suggesting that such
activity is BPI dependent.49

The ability of BPI to potently inhibit endotoxin of isolated LPS
(regardless of chemotype) and of whole bacteria (including strains
resistant to the antibacterial action of BPI42,50) is opposite to that of
its structural homolog the LBP, which is an acute-phase reactant
that greatly amplifies LPS proinflammatory signaling.51 Whereas

Table 2. Antimicrobial proteins and peptides of neutrophils

Protein
Molecular weight

(kd) Neutrophil granule
Epithelial/mucosal

expression Activity Mechanism

Lactoferrin 80 20 Br, Tr, Sl, BAL B6, F, EV Iron-binding/membrane-active

BPI 55 10 ? B2 Binds lipid A of LPS

Serprocidins ;30 10 ? B6, F, m, M Proteolysis/membrane-active

Cathelicidins 10-20 20 Kr, Ts B6, F Release of membrane-active peptides

Lysozyme 14.5 10 & 20 Br, Tr, Gs B1, F Lysis of peptidoglycan/membrane-active

Phospholipase 14 (granule) Liver (APR), Int B1 Lysis of bacterial phospholipids

Defensins 4 10 Pul, R, Int, Ug B6, F, EV, m, M Formation of voltage-gated multimeric pores

10 indicates primary; 20, secondary; (granule), not yet assigned; APR, acute-phase reactant; BAL, bronchoalveolar lavage fluid; Br, breast milk; Gs, gastric secretions; Int,
intestinal (Paneth cells); Kr, keratinocytes; Sl, saliva; Tr, tear fluid; Ts, testes; Ug, urogenital tissues; B, bacteria (1 and 2 refer to Gram staining); F, fungi; m, metazoan
parasites; M, mammalian cells; EV, enveloped viruses.

Figure 2. Tertiary structures of a neutrophil-derived antimicrobial protein and
peptide in clinical trials. (A) BPI has a bipartite structure characterized by 2-fold
symmetry that gives the molecule a “boomerang” shape. Cationic amino acid
residues (purple) are concentrated in the N-terminal half of the molecule, which
carries the endotoxin-neutralizing and bactericidal activities of the protein. A recombi-
nant N-terminal BPI fragment is currently in clinical trials. The C-terminal half of BPI is
required for opsonic activity. Two apolar sites thought to be important for interaction
with lipids are indicated in green. (B) The protegrin peptide, which is derived from a
cathelicidin precursor, is composed of 18 amino acids. Four cysteine residues form 2
disulfide bonds (yellow), giving the peptide a hairpin structure. Six cationic arginine
residues are indicated in red.
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LBP disaggregates LPS, delivering LPS monomers to the cellular
CD14/TLR complex, BPI enhances LPS aggregation, thereby
preventing LBP action.52 Although multiple cationic proteins and
peptides have demonstrated anti-endotoxic activity when tested
in artificial media in vitro,15 BPI is notable for its ability to
neutralize endotoxin in biologic fluids even in the presence of
LBP,53 suggesting that BPI may contribute to down-regulating the
proinflammatory effects of gram-negative bacteria and endo-
toxin in vivo.

Serprocidins.The serprocidins are 25- to 37-kd serine proteases
with cytotoxic activity that are localized in neutrophil primary
granules.54 The serprocidin family includes neutrophil elastase,
cathepsin G, proteinase 3, and azurocidin/CAP37. The serprocidins
are structurally related to the granzymes of cytotoxic T cells and
manifest microbicidal activity both via direct membrane perturba-
tion as well as by proteolytic action. Whereas elastase and
cathepsin G are catalytically active, the divergent primary structure
of azurocidin in the region corresponding to the active site render it
enzymatically inactive.55 Nonenzymatic killing by serprocidins is
believed to depend on the membrane perturbing effects of these
cationic proteins. Serprocidins manifest broad cytotoxic activity
against gram-negative (eg,E coli) and gram-positive bacteria
(Streptococcus faecalis), fungi (Candida albicans), and protozoa as
well as mammalian cells.54 Azurocidin acts in synergy with either
elastase or cathepsin G to kill the bacteriumCapnocytophaga
sputigena.56 Elastase also participates in generating antimicrobial
activity during inflammatory responses by cleaving cathelicidin
proforms (see below) to generate active antimicrobial peptides.57

Of note, mice rendered deficient in neutrophil elastase by genetic
engineering are more susceptible to sepsis and death despite
normal accumulation of leukocytes, suggesting an impairment in
bacterial killing.58 Unlike most of the other cationic proteins and
peptides, azurocidin actually enhances cellular responses to endo-
toxin by a mechanism that has yet to be defined.59

Cathelicidins. The cathelicidins are a structurally diverse group of
antimicrobial peptides that are expressed at the C-terminus of 11- to
20-kd inactive proforms in the neutrophil secondary granules of
humans and other mammalian species.60Because neutrophil second-
ary granules are readily degranulated to the extracellular space,
cathelicidins are released into inflammatory fluids where they are
found at relatively high concentrations.49 Some cathelicidin genes
possess upstream DNA motifs (eg,NF-kB, interleukin [IL]-6,
granulocyte/macrophage colony-stimulating factor [GM-CSF], and
NF-1) predicted to confer inducibility during acute-phase re-
sponses.61,62The human cathelicidin peptide FALL-39/hCAP-18 is
expressed in neutrophil precursors, is induced in keratinocytes of
inflamed skin,63 and is found in high concentrations in the
lipoprotein fraction of plasma.64 Derived from porcine neutrophils,
protegrin is a 2-kd peptide composed of 18 amino acids with 2
internal disulfide bonds (Figure 2B). The broad spectrum microbi-
cidal activity of protegrin against bacterial and fungal pathogens
requires intact disulfide bonds and is believed to be mediated by the
formation of multimeric pores in the microbial membrane.65,66The
amphipathic rabbit cathelicidin peptide CAP-18 is not only micro-
bicidal but also binds and neutralizes endotoxin.67 The rabbit p15s,
which apparently do not undergo cleavage, act synergistically with
BPI against gram-negative bacteria.68 Solid-phase peptide synthe-
sis has been used to create a carboxymethylated congener of the
cathelicidin peptide indolicidin with increased cationicity thereby
enhancing its activity against gram-negative bacteria.69

Lysozyme.Lysozyme is a 14-kd enzyme that degrades bacterial
peptidoglycans by cleaving the glycosidic bond ofN-acetyl glu-
cosamine. This enzyme is stored in both primary and secondary
neutrophil granules. Gram-positive bacteria with minimally cross-
linked peptidoglycan (eg,Bacillus subtilis) allow access of ly-
sozyme to its substrate, are rapidly lysed and killed by this enzyme,
and are generally (consequently?) nonpathogenic. Most gram-
positive clinical pathogens possess highly cross-linked peptidogly-
can and are thereby resistant to the action of lysozyme. Moreover,
gram-negative bacteria are generally resistant to the action of
lysozyme by virtue of their hydrophobic outer membrane. The
spectrum of action of native lysozyme may be broadened by
synergistic action with other antibiotic proteins of neutrophils
including lactoferrin70 and defensins.71 Use of recombinant DNA
technology to create a novel lysozyme congener possessing a
hydrophobic N-terminal peptide enhances activity against gram-
negative bacteria.72 Transgenic expression of human lysozyme in
mice is associated with production of milk that is antimicrobial
toward cold spoilage pathogens such asLactobacillus viscus.73

Phospholipases A2. The 14-kd phopholipases A2 (PLA2) are
disulfide-rich enzymes that hydrolyze phospholipids at the 2-acyl
position. Group II PLA2, which are structurally defined by a unique
disulfide arrangement, are found in neutrophil granules and are also
secreted by the liver into plasma as acute-phase reactants.18

Neutrophil-derived antibiotics such as BPI and certain cathelicidins
(eg, rabbit p15s) can render the membrane phospholipids ofE coli
susceptible to PLA2-mediated enzymatic cleavage.74 The degree of
destruction of gram-negative bacteria ingested by neutrophils is
related to the magnitude of phospholipolysis.75 More recent work
has focused on the potent (nmol/L) and selective direct bactericidal
action of PLA2 against gram-positive bacteria includingStaphylo-
coccus aureus,Listeria monocytogenes, and vancomycin-resistant
Enterococcus. PLA2 is found in murine intestinal Paneth cells,
rabbit inflammatory ascitic fluid, human tear fluid,76 and in the
acute-phase plasma of baboons challenged with intravenous bacte-
ria.27 In all of these settings, PLA2 has been shown to function
enzymatically as the primary microbicide active against gram-
positive bacteria. Consistent with these results, mice that express
PLA2 are relatively protected againstS aureusinfection when
compared to their PLA22/2 counterparts.77

Calprotectin. The calprotectin complex is composed of 8- and
14-kd members of the S-100 family of calcium-binding proteins
and is particularly abundant in the cytosol of neutrophils where it
represents about 30% of total cytosolic protein.78 Calprotectin
manifests antimicrobial activity in themmol/L range against
bacteria and fungi by zinc chelation that is mediated by histidine-
rich protein regions.79 Both neutrophil lysates and abscess fluids
possess zinc-reversible antimicrobial activity suggesting that “holo-
crine secretion” of calprotectin from neutrophils undergoing cell
death might represent another mechanism by which these cells
combat infection.80

Defensins.The defensins are a family of 4-kd peptides with broad
cytotoxic activity against bacteria, fungi, parasites, viruses, and
host cells.81 The activity of defensins depends on both their
cationicity as well as their 3-dimensional structure.82 Defensins
form multimeric voltage-dependent pores that permeabilize cellu-
lar membranes. Whereas classical (a-) defensins are characterized
by 6 invariant cysteine residues forming 3 disulfide bonds,
b-defensins contain a distinct disulfide arrangement. Humans
expressa-defensins in neutrophils andb-defensins in intestinal
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Paneth cells, as well as pulmonary71 and reproductive epithelia.83

The isolation of a salt-sensitive pulmonaryb-defensin has sug-
gested that impairment of this innate defense is an important
contributor to chronic pulmonary infections in patients with cystic
fibrosis.84 However, the ion composition of airway surface fluid is
apparently similar in patients with cystic fibrosis and normal
controls raising doubts about the importance of airway liquid
tonicity to the impairment of antibacterial defense in patients with
cystic fibrosis.85

The activity of defensins is limited by monovalent and divalent
cations as well as by plasma and serum proteins suggesting that the
action of these peptides is limited in the extracellular environment
to prevent indiscriminate cytotoxicity. Thus, whereasb-defensins
act at mucosal surfaces,a-defensins may be most active intracellu-
larly in the phagolysosome.

Of note, a recently described cyclic antimicrobial peptide found
in the neutrophils and monocytes of rhesus macaques is an index
member of a novel family named “theta” (u)-defensins.86 Elegant
biochemical analysis reveals that rhesusu-defensin-1 (RTD-1) is
naturally produced by a unique ligation of 2 truncateda-defensins.
The cyclic conformation ofu-defensins confers relative salt
insensitivity allowing this peptide to exert its microbicidal effect in
physiologic saline.

Eosinophils

An important role for eosinophils in antiparasitic defense has been
suggested by several observations: (1) parasitic infection is associ-
ated with marked eosinophilia mediated by IL-5, (2) depletion of
eosinophils with selective antisera has been associated with
increased pathogen burden in some animal models of parasitic
infection,87 and (3) eosinophil-derived cytotoxic proteins demon-
strate antiparasitic activity in vitro. Eosinophils also possess
antimicrobial activity against bacteria and fungi. Although eosino-
phils have been shown to have lesser bactericidal activity towardE
coli and S aureusthan neutrophils, it is not known whether this
might relate to relative deficiency of oxygen-dependent (eg,
peroxidase-H2O2-Cl system) or oxygen-independent (eg, antimicro-
bial protein/peptide) mechanisms.88,89

Eosinophils contain at least 2 granule populations—the primary
granules, containing the Charcot-Leyden crystal protein, and the
secondary granules that carry cytotoxic proteins.90 Major basic
protein (MBP), which accounts for about 50% of eosinophil
granule protein content, is a 10- to15-kd arginine-rich polypeptide
that aggregates to form the crystalline core of eosinophil secondary
granules. MBP demonstrates antihelminthic (Trichinella spiralis,91

Schistosoma mansoni,92 Brugiaspecies91), antiprotozoal (Trypano-
soma cruzi93), and antibacterial (E coli,S aureus)94 activities and is
deposited on the surface of the fungusParacoccidioidomycosis
brasiliensisin biopsy samples from patients.95 A divergent anionic
homolog of MBP, termed MBPH, has recently been cloned from
maturing eosinophils and has reduced cytotoxic activity.96 Eosino-
phil cationic protein (ECP) and eosinophil-derived neurotoxin
(EDN) are 17- to 21-kd cationic proteins with homology to
ribonucleases, which can exert cytotoxic activity by both catalytic
and noncatalytic mechanisms.97 The arginine-rich ECP is highly
cationic and is thought to mediate cytotoxicity by membrane-
disruptive effects that are also manifest against metabolically
active bacteria94 and that may be mediated by formation of
voltage-gated ion channels in lipid bilayers.98 Like MBP, ECP
demonstrates bactericidal activity by sequential permeabilization
of the outer and inner membranes ofE coli.94 EDN is less cationic
than ECP and may mediate cytotoxic effects by catalytic mecha-
nism as suggested by the ability of RNase inhibitors to block the

cytotoxicity of EDN towardT cruzi.93 Both ECP and EDN have
recently been detected in neutrophils as well.99

Eosinophils share certain members of the neutrophil armamen-
tarium. Lysozyme has been localized to eosinophil secondary
granules.100 It has been suggested that the presence of relatively
low amounts of BPI in the secondary granules of human eosino-
phils might reflect a role for these cells in antibacterial host defense
or a role for BPI in antiparasitic activity.101

Macrophages

In addition to oxidase and nitric oxide synthase activity, macro-
phages also possess oxygen-independent microbicidal activity.102

Macrophages express multiple components of the classic and
alternative pathways of the complement system, as well as several
of the antimicrobial proteins and peptides described in neutro-
phils.103 Multiple studies have demonstrated that the enzymes
elastase and lysozyme are expressed by activated macrophages.
Rabbit pulmonary macrophages express defensin peptides.104 The
origin of cell surface BPI expressed on human peripheral blood
monocytes remains to be determined.105 The cytosolic calprotectin
protein that is abundant in neutrophil cytosol is also found in
macrophages.78

Studies have attempted to identify antimicrobial proteins and
peptides in macrophages or in macrophage-like cell lines activated
by interferon-g, which enhances macrophage microbicidal activity.
Several cationic murine microbicidal proteins (MUMPS), which
are members of the cationic histone family, have been isolated from
macrophages.106 MUMPS possess broad-spectrum antimicrobial
activity against gram-negative, gram-positive, mycobacterial, and
fungal pathogens and may contribute to the microbicidal activity of
the macrophage lysosomal apparatus. Ubiquicidin is a 6.6-kd
cationic peptide derived from the cytosolic fraction of interferon-
activated RAW 264.7 cells with activity toward gram-negative (E
coli, Salmonella typhimurium,Yersinia enterocolitica) and gram-
positive (L monocytogenes,S aureus) bacteria.107

Transgenic techniques have been used to enhance the antimicro-
bial activity of macrophages. A preliminary effort to enhance
intracellular microbicidal activity by xenogenic expression of the
defensin HNP-1 in murine macrophages enhanced growth inhibi-
tion of Histoplasma capsulatum.108 Macrophages transfected with
a BPI-IgG fusion protein are better equipped to neutralize endo-
toxin and have diminished tumor necrosis factor (TNF)-a release
in response to LPS.109

Cytotoxic T lymphocytes and
natural killer cells

Both cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells
possess granule-associated cytotoxic proteins and peptides that can
be directed toward microbial pathogens as well as host cells altered
by infection or tumorigenesis. CTLs and NK cells contain perforin,
a monomeric pore-forming protein with homology to the C9
component of complement.110The granzymes are a family of 25- to
30-kd serine proteases found in the granules of cytotoxic T cells
that are homologous to the neutrophil-derived serprocidins.111

Granzymes, which are expressed in keratinocytes as well, partici-
pate in triggering apoptosis in target host cells and in bactericidal
activity.112,113 CTLs and NK cells are also the repository of
members of the saposin class of cytotoxic peptides, including
porcine NK lysin and human granulysin. NK lysin is an IL-2–
inducible 78 amino acid cationic cytotoxic peptide with activity
against bacteria (includingE coli and Bacillus megaterium) and

2668 LEVY BLOOD, 15 OCTOBER 2000 z VOLUME 96, NUMBER 8
 For personal use only. by guest on September 28, 2011. bloodjournal.hematologylibrary.orgFrom 

http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


tumor cells.114 NK lysin possesses 3 intramolecular disulfide bonds
that are required for potent cytotoxic activity and whose reduction
by host thioredoxin reductase may serve as a means of limiting the
cytotoxic effect of this peptide.115 In addition to direct cytotoxic
effects, NK lysin is capable of binding and neutralizing LPS.116

Granulysin, a peptide of CTL granules, is a broad-spectrum
microbicide that is required for intracellular killing ofMycobacte-
rium tuberculosis.117

Platelets

Although principally thought to have a role in hemostasis and
wound healing, platelets are increasingly appreciated as antimicro-
bial effectors.118 From an evolutionary perspective, the expression
of coagulation, wound healing, and antimicrobial defense by a blood-
borne cell is well described in the hemocytes of the horseshoe crab
Limulus polyphemus.119 In an animal model ofStreptococcus sanguis
endocarditis, rabbits rendered thrombocytopenic by administration of
antiplatelet serum developed a higher bacterial burden at aortic valve
vegetations, suggesting an antimicrobial role for platelets.120

Over the past decade, work by Yeaman and colleagues121,122has
demonstrated that plateleta granules contain a number of distinct
6- to 9-kd cationic antimicrobial peptides derived from either
platelet acid extracts (PMPs) or extracellular medium of platelets
activated with thrombin (tPMPs). Whereas PMPs contain 3 to 4
cystine residues, tPMPs contain few or no cysteine residues. PMPs
possess broad-spectrum antimicrobial activity against gram-
negative (E coli), gram-positive (S aureusand Staphlococcus
epidermidisas well as viridans streptococci) and fungal pathogens
(C albicansandCryptococcus neoformans). Electron microscopy
and studies of membrane transmembrane potential suggest that
PMPs target the microbial cytoplasmic membrane. The effects of
PMPs on the cell membrane ofS aureusare distinct from those of
defensin peptides, demonstrating enhanced activity against strains
with larger transmembrane potential.123

Pathogenic strains ofS aureusandS epidermidisderived from
patients with endocarditis are often resistant to tPMP, raising the
possibility that such resistance might be an important virulence
factor in such infections.124

Clinical application

The effort to develop blood cell-derived proteins and peptides as
novel antibiotics is driven by at least 2 considerations: (1) the rising
prevalence of multidrug-resistant microorganisms, and (2) a grow-
ing population of immunocompromised patients. In terms of
immunocompromised patients, clinical conditions associated with
impaired leukocyte or platelet function include newborn status,
overwhelming sepsis, leukemia, exposure to chemotherapy, congeni-
tal hematopoietic defects, and cystic fibrosis.125 However, the
ability to enhance hematopoietic cell defense has been limited.
Granulocyte transfusions are associated with potential side effects,
including alloimmune reactions126 and induction of pulmonary
inflammation. Administration of the cytokines such as granulocyte
colony-stimulating factor and GM-CSF has been shown to raise
neutrophil counts in patients undergoing chemotherapy but has not
demonstrated improved survival or clinical outcome.127 Whether
the leukocytes generated by the administration of such growth
factors are fully functional and contain all of the aforementioned
antimicrobial apparatus has not been fully defined. Thus, consider-
ations relating to both microbe and host have generated consider-

able enthusiasm for evaluating host-derived antimicrobial proteins
and peptides as potential novel antibiotics.

Topical/aerosol formulations

The magainin peptides derived from frog skin were the first of the
animal-derived antimicrobial peptides to reach clinical trial. Phase
III evaluation of a topical magainin preparation for treatment of
impetigo and polymicrobial infections characteristic of ulcers in
patients with diabetes128reportedly demonstrated insufficient activ-
ity. The wide variety of insect-derived antimicrobial peptides
(Table 1) are currently in early stages of development as potential
novel antibiotics.129

The porcine neutrophil-derived peptide protegrin (Figure 2B) is
the first of the mammalian cathelicidin peptides to reach clinical
trial. Topical administration of protegrin in a hamster model of
chemotherapy-induced oral mucositis was associated with de-
creased microbial burden at mucosal lesions, decreased lesion
severity, and accelerated recovery.130A phase I study demonstrated
that this peptide can be safely delivered topically to humans who
develop mucositis in the context of myeloablative chemotherapy. A
recently completed phase II study of topical (oral) protegrin
involving 177 patients undergoing bone marrow transplantation
indicated that administration of this peptide is associated with a
statistically significant reduction in mucositis after transplantation
and a trend toward a reduced number of febrile days.131A phase III
study of protegrin for the prevention of mucositis associated with
myeloablative chemotherapy is now underway. Protegrin is also
being evaluated as an aerosolized antimicrobial therapy for the
chronic respiratory infections of patients with cystic fibrosis.

Systemic administration

The selective action of BPI (Figure 2A) toward gram-negative
bacteria and their endotoxin, which has been documented in vitro,
has recently been demonstrated in animal models and in humans as
well. A recombinant 21-kd N-terminal modified fragment (rBPI21)
of human BPI expresses both the antibacterial and anti-endotoxic
activities of the holoprotein and has demonstrated beneficial
effects, either alone or in synergistic combination with conven-
tional antibiotics, in animal models of sepsis, pneumonia, endotox-
emia, and burns.48 Phase I studies in humans indicate that rBPI21 is
well tolerated and nonimmunogenic. rBPI23 (another recombinant
N-terminal fragment of BPI) given intravenously to subjects who
have received endotoxin is able to markedly inhibit LPS-induced
cytokine release,132 coagulant responses, and pathophysiologic
changes such as alteration of cardiac index.133

Several potential indications for rBPI21 have been selected for
phase II studies, based on the presence of gram-negative bacteria or
endotoxemia or both: (1) meningococcemia and intra-abdominal
infections (endotoxin on or released from invading bacteria), (2)
hemorrhagic trauma (endotoxin translocation secondary to de-
creased intestinal barrier integrity), and (3) liver resection (de-
creased endotoxin clearance). A phase II study demonstrated that
open-label administration of rBPI21 to 26 children with fulminant
meningococcemia, admitted to a pediatric intensive care unit, was
associated with reduced mortality relative to that predicted by
clinical prognostic scores, IL-6 levels, and historical control.134

Two phase III double-blinded placebo-controlled trials of rBPI21

for the treatment of hemorrhagic trauma and of fulminant meningo-
coccemia have been completed recently. Although the former trial
was stopped due to insufficient activity, the treatment group in the
meningococcemia study reportedly had lower rates of mortality
and morbidity. Results of this study are currently under evaluation.
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Potential future indications for rBPI21 may include conditions
characterized by a relative deficiency of endogenous BPI. Newborns are
relatively deficient in BPI by virtue of the relatively low amounts of BPI
protein in their neutrophils135 as well as their well known tendency for
leukopenia in the face of overwhelming sepsis. Supplementation of
newborn cord blood with rBPI21 enhances its antibacterial activity
against certain gram-negative clinical pathogens and inhibits release of
TNF-a induced by such bacteria,42 suggesting that supplementing
rBPI21 might be of benefit to newborns suffering from gram-negative
bacterial infections or endotoxemia. Another population at risk for
bacteremia or endotoxemia in the setting of limited endogenous BPI
stores are oncology patients who become profoundly neutropenic during
chemotherapy. In this regard, it is notable that in an animal model of
graft-versus-host disease (GVHD), chemotherapy-related mucosal in-
jury allowed endotoxin translocation across the gut causing cytokine
release and thereby triggering GVHD.136This study raises the possibil-
ity that neutralizing endotoxin might reduce the risk of GVHD.

It is likely that additional leukocyte- and platelet-derived
antibiotics will reach clinical trial as systemic agents. The peptide
protegrin reduces mortality of leukopenic mice injected with
vancomycin-resistantEnterococcus faecium65 and a peptide de-
rived from CAP18 reduces cytokine release and mortality when
administered with aztreonam in a mouse model ofPseudomonas
aeruginosainfection.137 Adenovirus-mediated gene transfer of the
human cathelicidin peptide LL-37/hCAP-18 was found to restore
bacterial killing in a cystic fibrosis xenograft model,138 raising the

possibility that enhancing such innate immune mechanisms might
someday be of clinical benefit.

Conclusion

The growing problem of microbial resistance has placed increasing
emphasis on developing novel antibiotics. Moreover, a growing
number of patients have impaired leukocyte- or platelet-mediated
defense either due to their primary disease or its treatment.
Blood-derived antibiotic proteins and peptides represent a source
of innate defense molecules that target the microbial membrane
leading to growth arrest and in some instances, neutralization of
proinflammatory surface components (eg, LPS). These natural
antibiotics and their synthetic congeners have activity that can be
demonstrated in biologic fluids and animal models and have proven
safe in preliminary clinical trials. Judicious enhancement of this
arm of innate immunity may eventually prove of clinical benefit to
selected patients.
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